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Moscow, Uman 

(Rece/ved 26 January 1994) 

Under the conditions of the plane static problem (plane strain) the problem of determining the initial plasticity zone near the 
end of a rigid punch impressed into an elastoplastic half-plane is considered. "I'ne plasticity zone is modelled by a straight slip 
line emer#ng from the end of the punch. Taking the shortness of the slip line into account the corresponding boundary-value 
problem is formulated for a half-plane with a non-symmetric rectilinear cut which emerges at its boundmy. An exact solution 
of the Wiener-Hopf functional equation is constructed and used to derive an equation for determining the length of the slip 
line. The equation is shown to be solvable. The direction in which the slip line develops is established from the condition for its 
length to be a ma,~imum. Expressions for the length of the sfip line and its angle of inclination to the boundmy are derived for 
various values of the parameters. 

1. Under plane strain conditions we consider the static problem of the impression of a rigid punch of 
angle ct at its vertex O into an elastoplastic half-plane (Fig. 1). The parallel sides of the punch are 
perpendicular to the boundary of the half-plane. It is assumed that under the action of  the impressing 
force P the punch will penetrate perpendicularly into the boundary of the half-plane. There is no friction 
between the punch and the surface of the elastoplastic body. Outside the contact line the body surface 
is stress free. 

However small the impressing force may be, a plasticity zone appears near the stress-concentrating 
point O. We shall only study the initial stage of its development, on the assumption that the impressing 
force is sufficiently small. The size of the plasticity zone will then be small compared with the length 
of the contact line and the size of the punch. Following the now widely-used and experimentally 
confirmed localization hypothesis [1-3], we will model the initial plasticity zone by a straight slip line 
emerging from the point O. Only the tangential displacement is discontinuous along the slip line, and 
the shear stress is equal to _% (where % is the shear yield point). The sign in front of % is decided 
when specific problems are formulated. In this case, in the corresponding elastic problem 

Kf(Oo) 300 ~ f(00)  = sin 00 +sin r °"*0 '  0 < 0 ° < n '  x'°°° ~ '  2 2 

(where xn~ o is the stress and K is a negative constant). 
Sincef(0o) > 0, for every 00 near the point O we have %00 < 0. Hence a minus sign should be chosen 

in front of %. 
In view of the fact that f(00) reaches its maximum value at 00 = 2arcos (~/(2)N(3)), the slip line should 

be expected to develop at an angle of approximately 109" to the stress-free 00 = x part of the boundary. 
This conclusion will be verified below by analysing the solution of the boundary-value problem. 

Because the slip line is short compared with the length of  the contact line and the size of the punch, 
and because in what follows we shall use information on the stress-strain state only near the point O, 
we shall use as the solution of this problem the solution of the corresponding problem for a semi-infinite 
punch. Here the curve OO1, that is smooth by assumption, can be replaced by any other smooth curve 
making an angle ct with the line 002.  

The boundary conditions are (see Fig. 1) 

r + L  
0=13, a 0 = x , e = 0 ;  0=13-n,  x ~ = 0 ,  u°=AIn L +coast 

0=0 ,  ( f fo)=(x~>=0;  (Uo)=0 (1.1) 
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(b) 

0=0, r<l, %o=-Xs; 0=0, r>l, (ur)=0 

0 : 0  
4(1-v 2) KII 

E 

Kll 0=0,  r--~l+O, " c ~ - ~  

(1.2) 

(1.3) 

i Oo(r,[$- n)dr = - P  (1.4) 

Here o0 and x~0 are stresses, u0 and ur are displacements, (n) is the jump in n at 0 = 0, E is Young's 
modulus, v is Poisson's ratio, kn is the stress intensity factor at the end of the slip line, to be determined, 
A is a negative constant whose value is chosen when solving the problem so that condition (1.4) is 
satisfied, and L = - A tg o~ 

It is required to find the length I of the slip fine and its angle of inclination [3 to the boundary of the 
half-plane. 

These quantities are determined below using the scheme employed in [3]. The length of the slip line 
is found from the condition that the stress intensity factor vanishes at its end. It is a function of the 
angle of inclination of the slip line of the boundary of the half-plane which is a free parameter of the 
problem. This angle, which gives the initial direction of development of the slip line, is found by choosing 
the value of the free parameter which maximizes its length. 

2. Applying a Mellin transformation [4] 

m* (p) = im(r)rlJdr 

to the equilibrium equations, the strain compatibility condition and Hooke's law, and using (1.1) and 
(1.2), we obtain the following relations for the Mellin transforms 

o~ (p, [5,-g) = g-l(p){_4[At (p)A 4 (p) + A2 (p)A 3 (p)]u(p) + 

+212A 3 (p)sin(p + 1)0t - [3) - 2d(p) - (p - 1)A~ (p)sin p(g - [3)sin [3]~0 (p, 0)} (2.1) 

x*,o (p,O) = - l~+l g(P)¢- (P)+ 4u(p)(p + 1)sin pgsin p[~sin[3 
sin 2 pTt 

g(p) = A 1 (p)A 2 (p) + 2A 3 (p)[cos 2p (n -  [~)- cos 2[~] 

(2.2) 

Al(p)=sin2p[~+ psin2 ~, A2(p)=sin2p(lc-~)-psin2[$ 

A3(p)=sin2p~-p2sin2[$, A4(P)=sin 2 p(x-[$)-p2sin2[3 

d(p) = (sin 2 p[~- psin 2 [3)[p cos p( l t -  [~)sin [~- sin p(~ - [3)cos [$] 
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nAE L p 

u(p) = 4(1 - v 2) sin/m 

O- E ~,/~u, \ 

(-ex < Rep < e 2 where el and e2 are sufficiently small positive numbers). Putting p = 0 into (2.1) and 
satisfying (1.4), we find 

A = - 1-V 2 a([3)P 
71 

(27I - 2[~- sin 2[$)(2[3 + sin 213) + 4([32 -sin 2 [~)sin 2 

a([3) - x(2[3+sin 2~)_ 2(~cos[$ + sin ~)2 

Using (1.2) and (2.2) we arrive at the Wiener-Hopf functional equation 

0 +(p)+a,(~)PU(p)-:+ 1 =-tglmG(p)dP-(p) 

( -e  I <Rep<e2)  

G t '~-  g(p) U(p)=(p+l)sinp~_p ' ~,=l 
• ~ r ,  - 2sin-'~ ~ t '  sin 2/m L 

O+ (p)= YZro(Pl,O)pPdp, al ([3) = a([3)sin[~ 
I 

(2.3) 

Using the factorization 

G+(P) ( R e p  = 0) ,  
G(p)= G-(p) 

pctg/m = K+(p)K-(p), 

1 /**lnG(z)d ] (G+(p), Rep<0  
exp "~gi:,.. Z-p zJ=~G-(p), Rep>0 

K±(p)= F(1 :l:p) 

(where F(z) is the Gamma function), we rewrite Eq. (2.3) as 

K+(p)~+(p) . . . .  P K+(p)U(p) K+(p) 
G+(p ) ~-al(p)- ~ G+(.p) -x~ (p+l)G+(p)= 

ptb-(p) 
K-(p)G-(p) 

(Re p = 0) 

S i n c e  

K+(p)U(p) 
G+(p) =U+(p)-U-(p) (Rep=0)  

1 i~ K+(z)U(Z)d z iU+(p), R e p < 0  
27ti _~** G+(z)(z- p) = [U-(p),  Rep > 0 

r+(p) 1 [X+(p) X+(-l)]+ 
G+-7 _I)J G+(-l)(p+l) 

(Re p = 0) 

(2.4) 

(2.5) 

from (2.5) we obtain 
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K+(p)~P+(p) . . . .  P..+. . Zs [K+(p) K+(-1)]= 
G+(p) +al tP)TU (P)-'-~LG'-~p) G+(_I)J 

p~- (p) P K+(-1)xs 
= - +al(8)--U-(p)+ 

K-(p)G-(p) " l  G+ (-1)(p + 1) 

(Re p = O) 

(2.6) 

The function on the left-hand side of (2.6) is analytic in the Re p < 0 half-plane, while the 
function on the right is analytic in the Rep > 0 half-plane. Using the principle of analytic continuation 
these functions are equal to one and the same function which is analytic over the whole of the p 
plane. 

Starting from (1.3), by a theorem of Abel type [5] we find 

q~+--~  kn ~ - ( p ) ~ _  kn 
t P ~ - ~ 7 '  2 ~  (p-c**) (2.7) 

From (2.4) and (2.7) it follows that the functions on the left- and fight-hand sides of (2.6) tend to 
kn/~/(2/) as p --+ ** in the half-planes Re p < 0 and Re p > 0, respectively. By Liouville's theorem the 
unique analytic function is identically equal to kn/4(~ over the whole of the p plane. 

Puttingp = 0 on the fight-hand side of (2.6), we conclude that the unique analytic function is equal 
to C = al(~)P/IU-(O) + K+(-1)/G+(-1)xs. 

The solution of Eq. (2.3) therefore has the form 

.+(p)= G +(p) {C_aI(~)Pu+(p)+ xs [K  +(p) K +(-1)]~ 
p;ILc- p) c+ -l)Jl 

(Re p < 0) 

~_(p)= K-(p)G-(p)p C-a~(~) U-(O)- G÷(_l)(p+O 

(Re p > 0) 

and the stress intensity factor at the end of the slip line is given by 

(2.8) 

3. Using (2.8) we obtain the following equation for determining the length of the slip line 

2 ( l - v  2) 
q~(k)=0, q~(X)fU-(0)+QM'A,, M= xstget Q= x~-~G+(_l)sin[~ 

E 
(3.1) 

From the Sokhotskii formula 

U-(O)=Z+I, l=~i~l e 

Z= 21 K+(0)U(0)G +(0) = - ~  {2x[(27t-2~-sin2[~)(2[3+sin2[~)+4([~2-sin2[~)sin2[~l}-Y: 

2,tiL_,.. G (z)z ,, G (z)z J 

We will study the behaviour of tp(~,) near the point ~, = O. Consider the integral 

1 f K+(z)U(Z)dz 

The contour T consists of the semi-intervals ]-i**, -ie], lie; i**[ and a semicircle of radius e centred at 
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z = 0 in the half-plane Re z < 0. The orientation of the contour coincides with the direction of the 
imaginary axis. 

This integral is equal to the sum E of the residues of the integrand at those of its poles that lie in the 
Re z < 0 half-plane. On the other hand, it is equal to le  + I0, where I0 is the integral over the above 
semicircle multiplied by l/(2ni). Hence I~ ~ / ,  I0 ~ Z as e ~ 0, and U-(0) = Z. 

From among the poles of  the integrand which lie in the Re z < 0 half-plane and correspond to the 
integral Iv, the one closest to the imaginary axis is the point z = -1/2. Hence 

q~.~, s i n a i 2  _t~ 
~:.) ~ - 4.~-G+(_ j6)-v a (X--~ 0) (3.2) 

It follows from (3.2) that the function q>(X), which tends to zero as X ~ 0, is negative near the point 
X = 0 .  

As a result of appropriate transformations ~p(X) acquires the form 

~p(X)~[ F I (t)cos t In X + F 2 (t)sin t In X]dt + QI~ 

Fll(t'=ls(t'[fll(t'+f2~(tt)]' ~ ( t ' = l [  s(t)f2(t) 2Z+s(t)fl(t)]t 

fl (t) = f0 (t)[i÷ (t)COS/0 ( t ) - /_  (t)sin/0 (t)], f2 (t) = f0 (t)[/_ (t)cost b (t) + i+ (t)sin/o (t)] 

fo (t) = [G(it)] -~ [i~ (t) + i24 (t)] -l 
i+(t)=il(t)i3(t)+i2(t)i4(t), i_(t)=il(t)i4(t)-i2(t)i3(t) 

1 ~ In GOD)d ° il(t)= Te-U costin Dd~, i2(t) = Te-~ sintln ~d~ i°(t)= 2x_'. ~ - t  ' o o 

i3(t)=Te-~u-~costlnudu, i4(t)=~e-Uu-Y2sintlna)du, s(t)= sht~ 
o o sh 2nt 

Let 5 be a sufficiently small positive number and 

Xs > ~E-2~max[~F(t)dt'{2o tgot I_b i ~(t)dt ] 

F(t)=lFl(t)l+lF2(t)l, F(t)=tlFl(t)l+S(t) (I fl(t)l+tl f2(t)l) 

Then 9(5) > 0, q¢(X) > 0 or X/> 5, and hence 9(X) > 0 when 2L t> & Using the negativity of 9(X), 
demonstrated above near the point X = 0, we conclude that Eq. (3.1) is solvable in the interval ]0; 5[, 
whereas when X I> 5 there is no solution. Calculations for a large number of  values of  the parameters 
13, v and M over a wide range of  variation for the latter show that the solution is unique. 

If X = s(13, v, M) is a solution of Eq. (3.1), then 

l=D P D= 1 - v2,tgota([~)s([$,v, M) 
l ' ~t 

The value of ~. giving the largest value of the function X(~) = as determines the angle of  inclination 
of the slip line to the boundary of  the half-plane. 

Table 1 gives some values for D when v = 0.333; for the values of % given there the value of ~. was 
107 ° when ~ = 15 °, 108 ° when 0~ = 45 ° and ¢ = 80 °, and 109 ° when ~x = 89 °. 

For fixed ¢, v, E, P as % decreases and for fixed v, %, E, P as 0c decreases the length of  the slip line 
increases. 

The results of the calculations enable us to assume that the angle ~. is approximately equal to 107-109 °, 
which agrees with what was said in Section 1 on the direction of propagation of the slip line. 

We also note that for the contact stress a0(r, 13 - n) the characteristic square-root singularity at the 
point r = 0 (the start of the slip line) is not present. 
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Table 1 

Ot ° 103'tJE = 1 5 7 10 

15 0,2114 0.2069 0,2042 0.2007 
45 0.1496 0,1443 0,1420 0,1398 
80 0,0801 0,0756 0,0731 0,0711 
89 0,0571 0,0537 0,0512 0.0492 
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